圆的周长教案

时间:2024-06-04 19:13:50
圆的周长教案

圆的周长教案

作为一位优秀的人民教师,常常要写一份优秀的教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?下面是小编帮大家整理的圆的周长教案,希望对大家有所帮助。

圆的周长教案1

一、教学目标:

1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

二、教学重点:

理解圆周率,能计算圆的周长。

三、教学难点:

探索并理解圆的周长与直径的商为定值。

四、教学准备:

大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

五、教学策略:

自主探索、讨论交流、点拨与练习

六、教学程序:

(一)激活目标

出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

(二)活动建构

1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

2、介绍圆周率的由来。

任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

组织学生阅读资料,谈感受。

3、推导出:c=πd或c=2πr

4、计算花坛的周长,解决相关问题。

圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

(三)解释应用

一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

(四)反馈测评

1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?

3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

(五)课堂小结

我的最大收获是什么?我有什么遗憾?我有什么疑问?

希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

圆的周长教案2

教学目标:

1.让学生经历已知一个圆的周长求这个圆的直径或半径的过程,体会解题策略的多样性。

2.进一步理解周长、直径、半径之间的关系, 能熟练运用圆周长的公式解决一些实际问题。

3.感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

已知一个圆的周长求这个圆的直径或半径。

教学难点:

理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

教学准备:

圆形图片。

教学过程:

一、复习旧知,引入新知

提问

1.什么是圆的周长?圆的周长计算公式是什么?

2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

指名回答,明确计算方法。

3.口答,求下列各圆的面积。

(l)r=2cm r=3cm r=5cm

(2)d=2cm d=3cm d=5cm

4.引入:知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。(板书:圆的周长计算的实际运用)

二、合作交流,探究新知

1.教学例6。

(1)出示例6的情境图,指名读题,并且找出条件和问题。

(2)讨论:如何准确地测算出这个花坛的直径?

(3)交流后,明确:先测量出这个花坛的周长,再利用圆的周长计算公式计算

花坛的直径。

(4)出示测量结果:花坛的周长是251.2米。

(5)学生独立完成。

(6)集体订正,教师板书

方法一:列方程解答。

解:设花坛的直径是x米。

3. 14x=251.2

x=251. 23. 14

x=80

答:花坛的直径是80米。

方法二:算术方法解答。

251. 23. 14 =80(米)

答:花坛的直径是80米。

(7)师:两种方法有什么相同点和不同点?你喜欢什么方法?

2.小结。

(l)提问:已知圆的周长,如何求圆的半径或直径?

(2)学生回答,教师板书

①列方程解答。

②d=C r=C 2

三、巩固练习,加深理解

1.完成练一练。

(1)学生独立完成。

(2)集体交流。

2.完成练习十四第8题。

(1)借助圆柱形教具演示,帮助学生理解什么是树干横截面,,。

(2)学生独立思考并计算。

(3)集体交流。

3.完成练习十四第9题。

(1)理解拱门的高度的含义。

(2)学生独立计算。

(3)集体订正。

4.完成练习十四第10题。

(1)学生独立思考。

(2)集体交流,明确:可以通过计算来比较,也可以根据周长的计算公式来直接比较。

5.作业:练习十四第6、7、10题。

四、课堂小结

师:通过这节课的学习,你有什么收获?

学生发言,教师点评。

板书设计:

圆的周长计算的实际运用

方法一:列方程解答。

解:设花坛的直径是x米。

3. 14x=251.2

x=251. 23. 14

x=80

答:花坛的直径是80米。

方法二:算术方法解答。

251. 23. 14 =80(米)

答:花坛的直径是80米。

d=C r=C 2

圆的周长教案3 < ……此处隐藏9065个字……和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

⑷联想。

想:算出圆的直径有什么价值。

可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

二、多种练习,内化知识。

⑴独立完成试一试和练一练。

⑵解答练习十八第6题。

独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

⑶解答练习十八第8题。

学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

三、作业,练习十八第7题。

圆的周长教案14

一、教学目标

1、结合具体事例,经历灵活运用圆的周长公式解决实际问题的过程。

2、能灵活运用圆的周长公式解决简单的实际问题,能表达解决问题的思路和方法。

3、了解现实生活中有许多与圆周长有关的问题,获得运用知识解决问题的成功体验。

二、课时安排

1课时

三、教学重点

能灵活运用圆的周长公式解决简单的实际问题。

四、教学难点

能表达解决问题的思路和方法。

五、教学过程

(一)导入新课

出示例5:一个圆形花坛的周长是251.2米。花坛的直径是多少米?

你从中读出什么数学信息?

(二)

讲授新课

师生交流数学信息,探究问题:花坛的直径是多少米?

生探究后交流展示方法:

小结:根据C=πd,可以列方程解答。

(三)

重难点精讲

生自主探究交流后计算方法:

解:设花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

答:花坛的直径是80米。

想一想:还可以怎样求花坛的直径?

生交流想法。

生探究后交流:

251.2÷3.14=80(米)

答:花坛的直径是80米。

(四)

归纳小结

通过刚才的探究,你能说说你的收获吗?

师生交流后小结:

如果用C表示圆的周长,则C=πd

或C=2πr

知道圆的周长,求圆的直径和半径,可以用算术法解答,也可以用方程来解答。

解答与圆的周长有关的实际问题时,先想想圆的周长计算公式,再根据已知条件来解答。

(五)

随堂检测

1、先估计,再求出圆的直径。

C=12.56米

C=15.7厘米

C=62.8厘米

2、计算

2.6+1.4=

0.52-0.28=

0.17+0.83=

3×2.4=

5×0.15=

0.78÷6=

3、填表

4、滚铁环是一种有趣的儿童游戏。如果用一根90厘米的铁片弯成一个圆形铁环,这个铁环的半径大约是多少厘米?(得数保留整数)

5、用一根绳子绕这棵树干,量得10圈的绳子是12.56米。这棵树树干横截面的直径大约是多少厘米?

6、圆形拱门的高度要在2.4——2.7米之间才符合标准。一个圆形拱门门框的周长大约是7.85米。它的高度符合标准吗?

7、一个圆形花圃的直径是25米。沿着它的边线大约每隔0.5米种一棵杜鹃花,一共要种多少棵杜鹃花?

六、板书设计

圆的周长的应用

如果用C表示圆的周长,则C=πd

或C=2πr

知道圆的周长,求圆的直径和半径,可以用算术法解答,也可以用方程来解答。

解答与圆的周长有关的实际问题时,先想想圆的周长计算公式,再根据已知条件来解答。

七、作业布置

1、右面是一个国际标准田径跑道的示意图。跑道的一周是多少米?

2、预习第96、97页有关内容。

八、教学反思

圆的周长教案15

教学目标:

⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。

⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

教学流程:

一、揭示课题

⑴猜测这节课的学习内容。

⑵揭示课题--圆的周长。

二、确定探索新知的方向。

⑴观察课前画在黑板上的两幅图。

分别指出正方形、圆形和正六边形的周长。

⑵沟通联系。

找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

⑶比较周长的长短。

以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

⑷确定探究方向。

量出圆的周长和直径,算出它们之间的倍数。

⑸准备数据采集。

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

三、合作探究新知。

⑴学生操作活动。

小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

教师在分组活动中采集到的数据。(是后加的,时加的)

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

1

15.5

5

3.10

2

8.9

2.9

3.07

3

14

4.3

3.26

4

7.6

2.5

3.04

5

8.9

2.7

3.30

⑵合理,得出公式,

看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

⑶介绍祖冲之。

四、利用新知解决简单的数学问题。

⑴说出计算周长的算式。

⑵口答练习十八1~2。

⑶作业练习十八3~4。

《圆的周长教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式